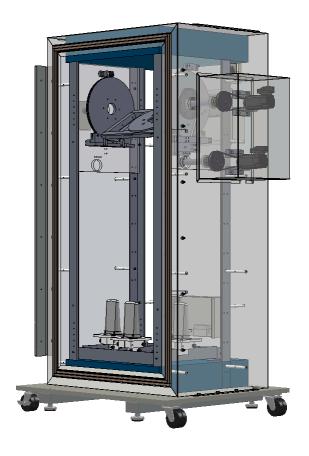


MIMO OTA in a Small Anechoic Chamber

NSF EARS Meeting October 8-9, 2013


NSF ID: 1217558

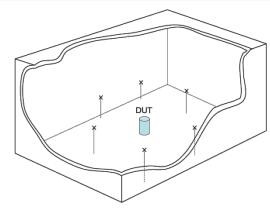
Dr. Nicholas Kirsch, University of New Hampshire

Nicholas.Kirsch@unh.edu

Fanny Mlinarsky, octoScope

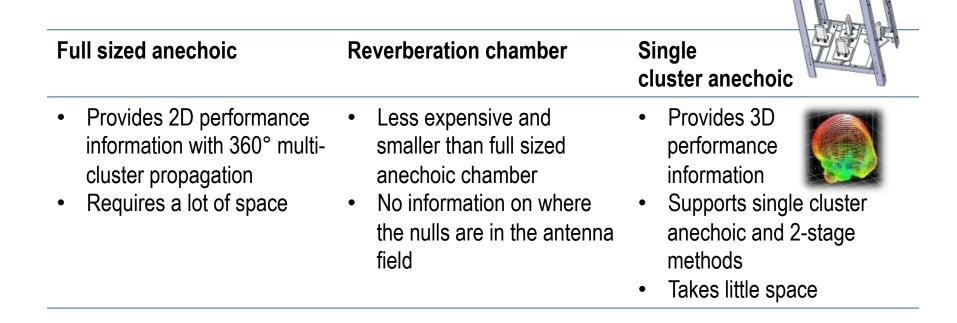
fm@octoscope.com

Motivation

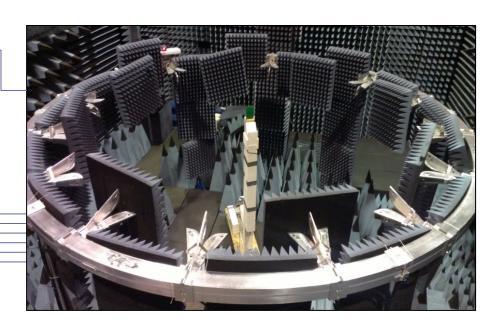

- NSF Enhancing Access to the Radio Spectrum (EARS)
 - Wireless system tests, measurements, and validation
- Next generation wireless standards use multiple antenna systems to increase connectivity and spectral efficiency.
- Certification of next generation devices is an expensive and time consuming process.

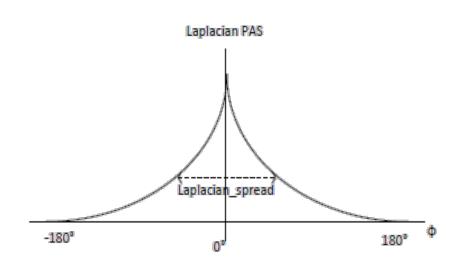
MIMO OTA Test Methods

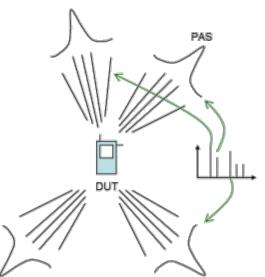
- MIMO OTA test metrics are being standardized by 3GPP [1] and CTIA [5]
- Large anechoic chamber
 - DUT is surround by multiple antennas inside the chamber
 - Multi-cluster 2D measurements on a plane
- Small anechoic chamber
 - Single cluster 3-D measurements indicating DUT's MIMO performance vs. orientation
 - 2-Stage method whereby antennas are measured in the chamber and then modeled using a traditional conducted fader
- Reverberation chamber
 - Uniform isotropic (3D) propagation is achieved via reflections from metal walls and mechanical stirrers
 - An external channel emulator is used to provide power delay profiles, Doppler and multipath fading



Comparison of MIMO-OTA Methods

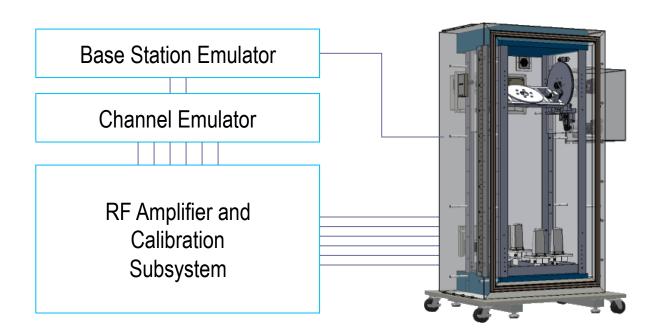

Conventional Chamber MIMO-OTA Of New Hampshire **Testbed**




Base Station Emulator

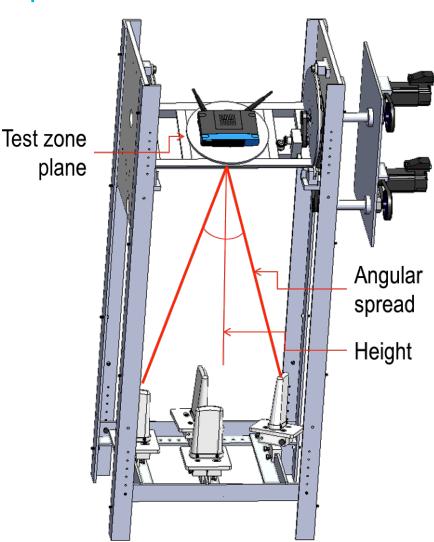
Channel Emulator

RF Amplifier and Calibration Subsystem


www.octoscope.com

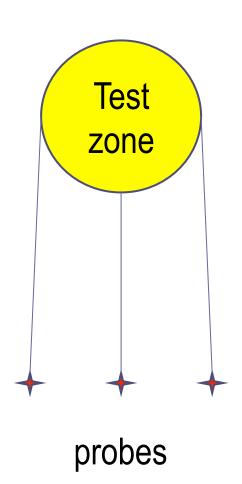
Small Chamber MIMO-OTA Testbed

Single cluster UMa/UMi models



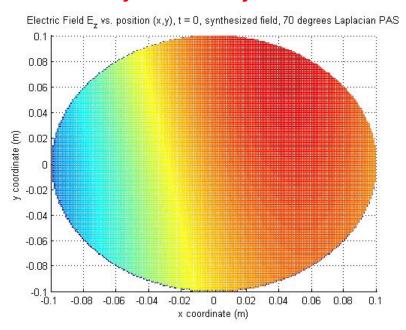
NSF Phase I: Accomplishments

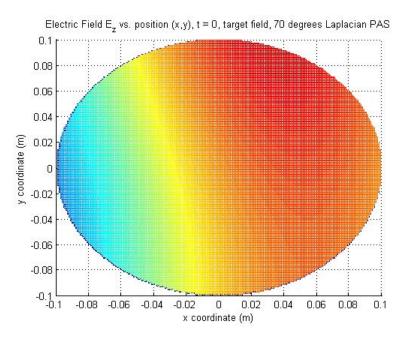
- Goal is to analyze accuracy of the measurement as a function of angular spread of test antennas and number of antennas
- Developed synthesis algorithm to produce Laplacian PAS clusters in the test zone based on:
 - The wavelength used in the measurement
 - Test zone radius
 - Geometry of chamber and probe locations
 - Shape of probe field
- Algorithm calculates error of synthesized field vs. theory – Reflectivity [8]



Method – Plane Wave Synthesis

- Widely used spherical wave theory models 3D antenna radiation [8]
- Plane wave synthesis technique is based on spherical wave theory [8] and enables synthesis of Laplacian PAS cluster field
- Team created synthesis algorithm to generate Laplacian PAS

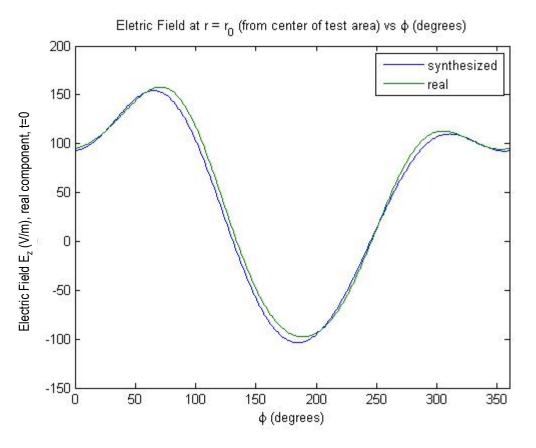




E-field Over Test Zone

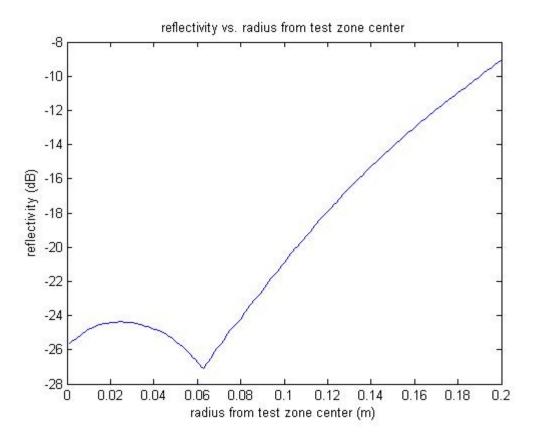
Synthesized by Model

Theoretical


Synthesized electric field levels across the test zone agree with the theoretical field levels for the desired Laplacian PAS.

Note: Results are shown for a single instance in time

E-field at Max Test Zone Boundary


Synthesized electric field levels around the circumference of the test zone agrees with the theoretical field levels for the desired Laplacian PAS

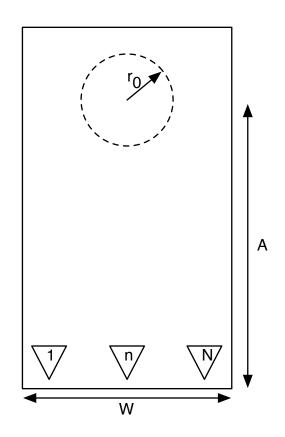
Note: Results are shown for a single instance in time

E-field Error vs. Test Zone Radius

Reflectivity (error) is < 20dB up to 0.1m from the center of the test zone

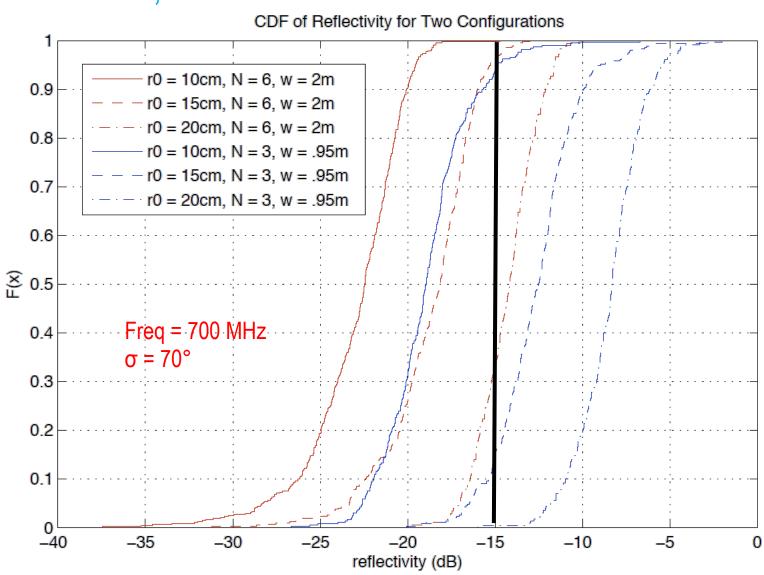
Reflectivity indicates the maximum Efield error at a given radius relative to the peak field over the entire test zone plane.

Note: Results are shown for a single instance in time


Simulation Technique

- Simulate the generation of a target electromagnetic field in a test zone with different small anechoic chamber dimensions/parameters
- The target EM field is a Laplacian-distributed Power Azimuthal Spectrum with a random phase a each angle $e^{j2\pi\beta}$ where β =[0...1].
- Monte Carlo simulations to determine the reflectivity in the test zone with 95% and 0.25 dB error.

Simulation Configuration Diagram

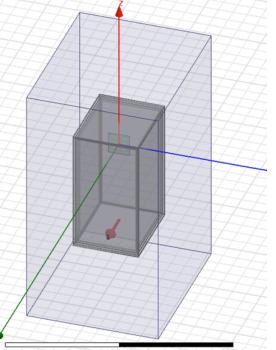

Number of antennas	Chamber height (m)	Chamber width (m)	PAS (σ in degrees)	Frequency (GHz)	Test zone radius (cm)	
3,4,5,6	1	0.95, 1.5 2	50,70,90	0.7, 2.4, 5.9	10,15,20	

www.octoscope.com

Simulated Reflectivity vs. # Probes, University of New Hampshire r0, width

Summary of Simulation Results

- More probes required for bigger test zone radius to maintain the same accuracy (reflectivity)
- For a small laptop or pad sized test zone, 20cm test zone radius, it appears at least 6 probes are required to keep the error (reflectivity) below -15 dB
- Constraining the range of phase variation of the waveform will make this feasible
- Our effort has created a tool to help us optimize error vs. number of probes



Computation EM Simulations

- Field based simulations do not account for reflections and near-field effects
- Create a chamber model to analyze the performance of a realistic system
- Vacuum results are comparable
- Reflections and NF must be accounted for

r ₀ (m) N	N	Lap. σ (deg)	Freq	Width (m)	Matlab, vacuum		HFSS, vacuum		HFSS, chamber	
					mean ref. (dB)	std. dev. ref. (dB)	mean ref. (dB)	std. dev. ref.	mean ref. (dB)	std. dev. ref. (dB)
								(dB)		77
0.1	6	25	700 MHz	2.0	-36.7199	2.4177	-36.2777	2.2741	-21.5130	4.4618
0.1	6	35	700 MHz	2.0	-34.6884	3.5247	-34.2675	3.4109	-22.1664	4.4680
0.1	6	45	700 MHz	2.0	-30.7851	4.5645	-30.3239	4.5859	-22.4231	4.7571
0.1	3	25	2 GHz	0.95	-17.1502	3.6965	-17.3265	3.9848	-15.1249	2.9846
0.1	3	35	2 GHz	0.95	-14.3711	3.6514	-13.4716	3.5810	-12.9946	3.1708
0.1	3	45	2 GHz	0.95	-12.2670	3.5722	-11.3945	3.4241	-11.0843	3.1304

Verifying Laplacian Field

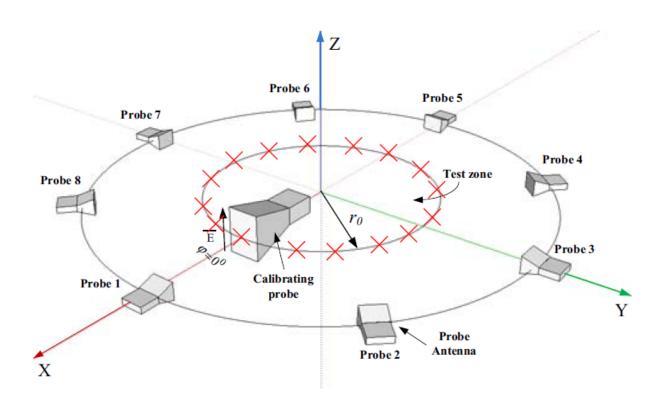


Fig. 3. The 2-D multi-probe system calibration setup of eight probes. The red crosses are the possible locations of the calibrating probe placed equidistantly with constant ϕ intervals $(\Delta \phi)$ around the test zone of radius r_0 .

Source: "Calibration Procedure for 2-D MIMO Over-The-Air Multi-Probe Test System", by D. Parveg et al

References

- 1) 3GPP TR 37.977: "Verification of radiated multi-antenna reception performance of User Equipment (UE)"
- 2) 3GPP TS 34.114: "User Equipment (UE) / Mobile Station (MS) Over The Air (OTA) Antenna Performance Conformance Testing"
- 3) Charles Capps, "Near field or far field?", EDN, Aug 16, 2001
- 4) CTIA, "Test Plan for Mobile Station Over the Air Performance Method of Measurement for Radiated RF Power and Receiver Performance", Revision 3.1, January 2011
- 5) CTIA, DRAFT "Test Plan for 2x2 Downlink MIMO Over-the-Air Performance"
- Afroza Khatun et al, "Dependence of Error Level on the Number of Probes in Over-the-Air Multiprobe Test Systems"
- 7) R4-131673 Measurement uncertainty evaluation of multiprobe method, Nokia Corporation, Anite Telecoms Ltd, Spirent Communications, RAN4#66bis, Chicago
- 8) J. E. Hansen, "Spherical Near-Field Antenna Measurements", Peter Peregrinus, London, UK, 1988.
- 9) IEEE, 802.11-03/940r4: TGn Channel Models; May 10, 2004

References

- 9) Schumacher et al, "Description of a MATLAB® implementation of the Indoor MIMO WLAN channel model proposed by the IEEE 802.11 TGn Channel Model Special Committee", May 2004
- 10) IEEE 802.11-09/0308r12, "TGac Channel Model Addendum", March 18, 2010
- 11) IEEE, 11-09-0334-08-00ad-channel-models-for-60-ghz-wlan-systems
- 12) Schumacher et al, "From antenna spacings to theoretical capacities guidelines for simulating MIMO systems"
- 13) Schumacher reference software for implementing and verifying 802.11n models http://www.info.fundp.ac.be/~lsc/Research/IEEE 80211 HTSG CMSC/distribution terms.html
- 14) 3GPP TR 25.996, "3rd Generation Partnership Project; technical specification group radio access networks; Spatial channel model for MIMO simulations"
- 15) IST-WINNER II Deliverable 1.1.2 v.1.2, "WINNER II Channel Models", IST-WINNER2, Tech. Rep., 2008 (http://projects.celtic-initiative.org/winner+/deliverables.html)
- 16) CITA MOSG130705, "Action Item Plan for Defining EUT Size and Test Zone for the Multi-Probe Anechoic Chamber Methodology", by Anatoliy Ioffe et al.
- 17) "Calibration Procedure for 2-D MIMO Over-The-Air Multi-Probe Test System", by D. Parveg et al